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Smart contract transactions associated with security attacks often exhibit distinct behavioral patterns compared
with historical benign transactions before the attacking events. While many runtime monitoring and guarding
mechanisms have been proposed to validate invariants and stop anomalous transactions on the fly, the empirical
effectiveness of the invariants used remains largely unexplored. In this paper, we studied 23 prevalent invariants
of 8 categories, which are either deployed in high-profile protocols or endorsed by leading auditing firms and
security experts. Using these well-established invariants as templates, we developed a tool Trace2Inv which
dynamically generates new invariants customized for a given contract based on its historical transaction
data. We evaluated Trace2Inv on 42 smart contracts that fell victim to 27 distinct exploits on the Ethereum
blockchain. Our findings reveal that the most effective invariant guard alone can successfully block 18 of
the 27 identified exploits with minimal gas overhead. Our analysis also shows that most of the invariants
remain effective even when the experienced attackers attempt to bypass them. Additionally, we studied the
possibility of combining multiple invariant guards, resulting in blocking up to 23 of the 27 benchmark exploits
and achieving false positive rates as low as 0.28%. Trace2Inv significantly outperforms state-of-the-art works
on smart contract invariant mining and transaction attack detection in accuracy. Trace2Inv also surprisingly
found two previously unreported exploit transactions.
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1 Introduction

Blockchain technology has paved the way for decentralized, resilient, and programmable ledgers
on a global scale. One of its most impactful applications is smart contracts. These smart contracts
allow developers to encode intricate transaction rules that govern the ledger. This innovation has
made both blockchains and smart contracts essential infrastructure for decentralized financial
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services, commonly known as DeFi. As of Sept 25, 2023, the Total digital asset Value Locked (TVL)
in 2, 933 DeFi protocols has reached an impressive 48.58 billion [def 2023a].

However, the landscape is not without its challenges. Security attacks pose a significant threat to
the security of smart contracts. Attackers can exploit various vulnerabilities by sending malicious
transactions, potentially leading to the theft of millions of dollars. As of Sept 25, 2023, the financial
losses attributed to security attacks on DeFi protocols exceeded 5.53 billion USD [def 2023b].
One key observation is that transactions initiated by attackers often display abnormal behav-

iors when compared to standard transactions from regular DeFi contract users. These malicious
transactions may exploit control flows in corner cases, use abnormally large values to trigger
overflows, or manipulate a large volume of digital assets to distort the market in DeFi contracts. In
fact, industry experts have been actively monitoring abnormal digital asset movements on-chain to
report malicious activities. For example, Forta Network [Network 2023] deploys monitoring bots to
detect on-chain security-related events in real-time. Driven by this observation, smart contract
developers have proposed deploying runtime checks to detect transactions leading to abnormal be-
haviors to neutralize malicious attacks. These checks involve enforcing various runtime invariants,
such as restricting the maximum number of digital asset deposits or withdrawals in a contract to
prevent market manipulation. Another example is to limit the interaction between contracts to
prevent attackers from crafting sophisticated attack strategies. However, these mechanisms are
often manually designed and tailored for specific DeFi protocols. This raises questions about their
effectiveness across different types of contracts and whether they maintain an acceptable false
positive rate without hindering normal user activities.
Smart Contract Invariant Study: This paper presents the first comprehensive, quantitative
analysis focused on the utilization of dynamically inferred invariants to enhance smart contract
security. We examine 23 invariant templates, which are advocated by leading auditing firms,
academic research, and DeFi protocol developers. Our findings indicate that dynamically inferred
dynamic invariants serve as effective mechanisms for thwarting security breaches. This paper then
proposes new strategies to combine multiple invariants effectively. Our combined invariants can
neutralize over 74.1% of malicious attacks while maintaining a false positive rate of less than 0.28%.
Trace2Inv: To facilitate this study, we have developed Trace2Inv, a scalable and extensible
invariant synthesis framework. Trace2Inv is designed to automatically derive invariants from
transaction traces through the use of trace and dynamic taint analysis. Trace2Inv leverages the
main feature of public blockchains, transparent databases of transactions histories containing
well-organized transaction execution data. Then, for each invariant template under consideration,
Trace2Inv employs a specialized inference algorithm to dynamically generate the corresponding
invariant based on historical transaction data.
Experimental Results:We evaluate Trace2Inv on a benchmark set of 42 smart contracts that have
previously fallen victim to security attacks. Our results show that properly constructed invariants
are effective in neutralizing security threats in 39 out of the 42 benchmark contracts.
In the course of our study, we categorized the 23 invariant templates into eight distinct groups

based on their underlying design principles: access control, time lock, gas control, re-entrancy, oracle,
storage, money flow, and data flow. Subsequently, we conducted a series of in-depth analyses to
compare the efficacy of invariants within each group. We also manually scrutinized the transactions
flagged by each invariant template, leading to several key findings:
• Finding 1: Certain invariant outperform others in terms of effectiveness. Within each invariant
group, we identified at least one invariant template that is quantitatively superior, neutralizing a
greater number of attacks while generating fewer false positives. See Section 6.1.

• Finding 2: Invariants remain effective even when attackers are aware of them in the majority
of cases. A common concern regarding runtime invariants is their potential vulnerability to
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informed attackers. Our study reveals that selected invariants in the access control, time lock,
gas control, money flow, and data flow groups often directly counter critical elements of attack
strategies, such as flash loans and transaction atomicity. These invariants not only neutralize
the malicious transactions but also render the attack strategies unfeasible or non-profitable in
84.21% of cases. See Section 6.2.

• Finding 3:Normal users can possibly circumvent invariant guards, thereby mitigating the impact
on user experience. For example, in the case of data flow and money flow invariants, a user
can divide a large transaction into smaller segments to bypass the invariant guard in 80% false
positive instances. See Section 6.2.

• Finding 4: Combined invariants, formed through disjunction or conjunction, offer enhanced
security coverage with lower false positive rate. Different groups of invariants address different
attack scenarios. A combined invariant formed through conjunction can cover more attack
vectors, while one formed through disjunction may reduce the false positive rate, as malicious
attacks often exhibit multiple abnormal behaviors. See Section 6.3.

Contributions: This paper presents the following contributions:

• Invariant Inference: This paper conducts an extensive study of 23 invariant templates, catego-
rized into 8 distinct groups. Additionally, we introduce innovative techniques for the effective
inference of invariants across all studied templates from transaction history.

• Trace2Inv: This paper presents the design and implementation of Trace2Inv, a specialized
tool for smart contract trace analysis that is capable of inferring the invariants under study from
transaction history.

• Experimental Results: This paper presents the first systematic and quantitative evaluation of
the effectiveness of runtime invariants on 42 victim contracts in 27 real-world exploits with high
financial losses.

• Invariant Study Findings: Our research uncovers a series of critical insights that will inform
the future application and development of dynamic invariants.

2 Background

Blockchain is a distributed and immutable ledger technology that records transactions across
multiple nodes in a network. It employs cryptographic techniques to ensure data integrity and
consensus algorithms to maintain final consistency across all participating nodes. Smart contracts

are self-executing programs with the terms of the agreement directly written into code. Deployed
on blockchains, they are immutable and transparent, enabling trustless transactions without the
need for intermediaries. Invariant guards (also called circuit breakers) are runtime checks
around contract invariant conditions that shall always hold during contract execution, aiming to
secure smart contracts on the fly.
Ethereum Virtual Machine (EVM) is the runtime environment for smart contract execution
on Ethereum. It is a Turing-complete virtual machine that interprets and executes the bytecode
compiled from contracts programmed in a high-level language like Solidity. Gas is a unit of
transaction fee on Ethereum, used to quantify the computational efforts for the execution of EVM
operations. It is paid in Ether, the native cryptocurrency of Ethereum. Externally OwnedAccount

(EOA) and contract account are two types of accounts on Ethereum. EOAs are owned by normal
users only who have the right to send transactions to blockchains, while contract accounts are
controlled by the code deployed at a certain blockchain address and its code will be executed when
the contract function is invoked. ERC20 is a standard interface for fungible tokens on Ethereum.
Almost all valuable tokens on Ethereum are ERC20 tokens.
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Common smart contract vulnerabilities include integer overflow/underflow [Blockchain-
Projects 2020], reentrancy [Siegel 2016], dangerous delegatecall [Santiago 2017], etc. DeFi vul-
nerabilities are smart contract vulnerabilities that are specific to DeFi applications. They are
more subtle to detect and attacks usually involve more sophisticated steps [Zhou et al. 2023]. DeFi
protocols are major targets for smart contract attacks, which have experienced $5.53 billion loss
out of the overall $6.94 billion caused by recent blockchain incidents [def 2023b].

3 Motivating Example

In this section, we present a motivating example to illustrate how an exploit transaction behave
differently from other benign transactions in histories and how dynamically inferred transactions
can neutralize the exploit transaction to enhance smart contract security.
Exploit Transaction: Harvest Finance is a Decentralized Finance (DeFi) protocol deployed on
Ethereum to manage and auto-invest stable coins for users. On October 26, 2020, USDC and USDT
vaults of the Harvest Finance were exploited, causing a financial loss of about USD $33.8 million.
Harvest Finance internally uses the market data of Curve, another DeFi stable coin trading protocol,
to determine the market prices of USDC and USDT. In the exploit transaction, the attacker distorts
the market of Curve to cause the Harvest Finance to make sub-optimal investment decisions.
Specifically, the attack transaction first borrows a large amount of digital assets and uses the

borrowed asset to buy USDC in Curve to inflate its price. Then it deposits 49.98M USDC into
Harvest vault contract, which increases its USDC balance from 72.83M to 122.51M. Due to the
manipulated oracle price of USDC, Harvest vault contract erroneously mints the attacker an inflated
51.46M fUSDC, which increases the total fUSDC supply from 127.58M to 179.04M. The attacker
then restores the USDC by selling the USDC in Curve, and redeems all its fUSDC tokens for 50.30M
USDC, yielding a 32k surplus compared to the initial deposit. This redemption decreases the Harvest
vault’s USDC balance from 122.81M to 72.51M and restores the total fUSDC supply to its original
value of 127.58M. Remarkably, this identical attack vector is executed three times within one exploit
transaction, consuming an unusually high gas count of 9, 895, 111, narrowly within the gas limit of
12, 065, 986 at the time. More details of this example can be found at the website [Chen et al. 2024f].
Abnormal Behaviors:We identify four distinct dimensions of abnormal behavior: a high frequency
of user interactions with the Harvest vault contract, an exceptionally large volume of token flow,
abrupt fluctuations in the total supply of fUSDC tokens, and remarkably high gas consumption. To
better understand the abnormality of the exploit transaction, we collect and analyze all transaction
history of the Harvest vault contract up to the point of the exploit, as illustrated in Figure 1.
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Fig. 1. Statistics of Transactions on Harvest USDC Vault Contract.

As shown in Figure 1, the last data point in each sub-figure, representing the exploit transaction,
consistently emerges as an outlier. Specifically, we have observed that the exploit transaction is the
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first in the contract’s history to: (1) invoke the withdraw function from a contract rather than from
a user address, (2) call both deposit and withdraw functions 3 times within one transaction, (3)
consume more gas than any previous transaction, (4) withdraw more USDC from the protocol than
any other transaction, (5) elevate the total supply of fUSDC tokens to an all-time high.
Apply Inferred Invariants: The multi-dimensional abnormalities observed in the exploit transac-
tion highlight a stark departure from typical transactional behaviors. This divergence suggests the
feasibility of crafting and applying runtime invariants that are capable of flagging and blocking
transactions exhibiting such anomalous characteristics. For example, suppose we inferred and
enforced an invariant stating that the withdraw function may only be invoked by an Externally
Owned Account (EOA), the exploit transaction could be blocked. This is because the exploit relies
on a contract to execute complex logic designed to extract funds from the vault. Likewise, if we
inferred an invariant that the total supply of fUSDC should not surpass 160M, the profitability of
each round of the exploit would be significantly reduced, making it unable to cover the cost of
manipulating the market of Curve. Importantly, both invariants do not affect any normal user’s
transaction in histories, making them practical for real-world deployment.
Patch Smart Contracts Post-Deployment: Despite the immutable nature of deployed smart
contracts, developers still have different methods to alter their behavior post-deployment, allowing
for the addition or modification of invariant guards to shield against future exploits: (1) Upgradable
or Modular Contract Design: Upgradable contract standards such as ERC897 [ERC 2024b] and
ERC1167 [ERC 2024a] incorporate a proxy and an execution contract. The proxy contract delegates
function calls to the execution contract, whose address can be modified within the proxy, allowing
developers to update their smart contracts after deployment. Similarly, developers can segment a
protocol into multiple contracts as different modules. A primary contract interfaces with users,
subsequently interact with other modular contracts that handle distinct functionalities including
invariant checking. The addresses of modular contracts could be updated in the primary contract.
(2) Application Interface Adjustments: For deployed protocols with neither upgradable nor modular
contract designs, addressing vulnerabilities or enforcing invariants can still be achieved by launching
a revised protocol version and redirecting users through website or application interfaces.
Research Questions: Inspired by these observations and their implications for enhancing smart
contract security, we are motivated to explore the following research questions:

RQ1: Given the fact that exploit transactions often exhibit abnormal behaviors, what kinds of

invariant guards are most effective at stopping exploit transactions?

RQ2: If an exploit transaction or benign transaction violates invariant guards, how difficult is

it for an attacker or a regular user to bypass them?

RQ3: As multiple dimensions of abnormality may be associated with an exploit transaction,
how effective is the combination of different invariant guards in preventing exploits?

RQ4: Invariant guards require additional gas at runtime. What are the gas overheads of

different types of invariant guards?

RQ5: In terms of enhancing smart contract security, how does this work compare to other

state-of-the-art works in contract invariant generation or transaction anomaly detection?

4 Invariants

Scope. Our research focuses on the invariants that can be used to distinguish between benign and
malicious transactions. Particularly, we focus on the invariants that are broadly applicable to most
common DeFi protocols. Invariants that are not for security purposes or highly specific to a single
protocol are outside the scope of our study.
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Methodology. In our effort to build a comprehensive list of smart contract transaction guards,
we carried out an analysis of existing research papers on smart contract security [Breidenbach
et al. 2021; Choi et al. 2021; Ghaleb et al. 2023; Liu et al. 2022b; Rodler et al. 2018]. Additionally, we
conducted a qualitative study on both audit reports and source code of the 63 audited projects from
ConsenSys, a leading smart contract auditing firm, from May 2020 to March 2023 [con 2023]. One
author extracted 2, 181 enforced invariants from the audit reports and smart contracts under audit
by searching for keywords such as “require” and “assert”, after eliminating any duplicates. The
author then manually reviewed these invariants to extract templates for pattern matching against
remaining uncategorized invariants. This iterative process continued until no new templates could
be extracted, and all remaining invariants were also deemed uncategorized for specific reasons. This
task took three weeks. Following this, another author reviewed and validated both the categorized
and uncategorized invariants for accuracy. In cases of disagreement, a third author was consulted
to resolve the issue. This review process lasted two weeks. All three authors have over two years
of smart contract security research experience.
Table 1. Qualitative Study Statistics Overview

+
(The table’s left section presents key statistics from the

qualitative study. The middle section presents categorized instances across invariant categories. The right

section presents instances for various reasons why these invariants remain uncategorized.)

Statistics Count Category Count Reason Count
# Audits 63 Access Control 283 Protocol Specific 1098
# Code Repositories 49 Time Lock 158 Array Length Check 200
# Invariants in Total 2181 Gas Control 2 Byte Operation 44
# Invariants Categoried 826 Re-entrancy 12 Safe Math 13
# Invariants Uncategorized 1355 Oracle Slippage 15

Special Storage 24
Money Flow 151
Data Flow 181

+ :All study results and collected invariant instances can be found at [Chen et al. 2024e].

The above process resulted in 826 invariants under 8 categories, which represent 37.87% of
the 2181 invariants, as shown in Table 1. Access Control and Data Flow are the two common
categories. The remaining invariants (62.13%) were not categorized for various reasons. The most
common reason is that invariants are specific to a particular protocol. For example, the invariant
“require(validUniswapPath(bAsset))” checks whether “bAsset” is a valid Uniswap path. However,
this invariant can only apply to protocols involving Uniswap, thus limiting its applicability. Other
uncategorized invariants are used for checking array lengths, byte operations, and arithmetic safety,
which target specific data structures or operations. Such invariants of low-level operations are hard
to apply as security guards because they are unable to capture the high-level user intentions.
Invariant Templates. Table 2 summarizes the results of our study. In the table, the Category
column groups invariant templates based on their application domains, such as Access Control,
Time Lock, etc. The ID column assigns a unique identifier to each invariant, while the Name column
provides a human-readable description. The Template column contains formal representation of
the invariant templates. Specifically, we use x to denote a contract state record maintained by
invariant templates. We use r to represent a local variable and _? as the undetermined parameter to
be inferred. The Parameter column shows the type of the undetermined parameter. The References
column lists the academic or industry sources of each invariant template.
4.1 Access Control (also called Permission Control)

Many research papers have conducted extensive studies on the access control [Ghaleb et al. 2023;
Liu et al. 2022b]. Access control governs the privileges associated with the transaction’s sender and
origin, dictating which addresses are authorized to invoke specific smart contract functions.
Note that transaction’s sender and origin could be different in Ethereum. The sender is the

address which invokes the contract function, while the origin is the address who initiates the entire
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Table 2. Invariants. (We use x to denote a contract state variable, r to denote a local variable, and _? to denote
a hole in the template to fill during the synthesis. |_| denotes the absolute value.)
Category ID Name Template Parameter References

Access Control

EOA onlyEOA msg.sender = tx.origin -

[Liu et al. 2022b]
[Ghaleb et al. 2023]

SO isSenderOwner msg.sender = owner? address
SM isSenderManager msg.sender =

⋃𝑛?
𝑖=1 mgri? addresses

OO isOriginOwner tx.origin = owner? address
OM isOriginManager tx.origin =

⋃𝑛?
𝑖=1 mgri? addresses

Time Lock
SB isSameSenderBlock xentrySdrBlk ≠ rexitSdrBlk - [idl 2023]
OB isSameOriginBlock xentryOrgBlk ≠ rexitOrgBlk -
LU lastUpdate rcurtBlk − xlstBlk ≥ nbBlks? Integer [fei 2023a,b; mst 2023]

Gas Control GS GasStartUpperBound gasStart ≤ gas? Integer motivated by Section 3
GC GasConsumedUpperBound gasStart − gasEnd ≤ gas? Integer

Re-entrancy RE nonReEntrant xlock = true - [Rodler et al. 2018]

Oracle Slippage OR OracleRange prLB? ≤ rnewPr ≤ prUB? Integer [dfo 2023b]

OD OracleDeviation | (rnewPr − xoldPr )/xoldPr | ≤ prDev? Integer [dfo 2023b]
[Breidenbach et al. 2021]

Special Storage TSU TotalSupplyUpperBound xtotSup ≤ totSup? Integer [Aav 2023] [dfo 2023a]
TBU TotalBorrowUpperBound xtotBor ≤ totBor? Integer [Aav 2023] [dfo 2023a]

Money Flow

TIU TokenInUpperBound rtokenIn ≤ v? Integer [bal 2023] [dfo 2023a]
TIRU TokenInRatioUpperBound rtokenIn ≤ v? Integer [bal 2023]
TOU TokenOutUpperBound rtokenOut/btoken,adr ≤ v? Integer [bal 2023] [dfo 2023a]
TORU TokenOutRatioUpperBound rtokenOut/btoken,adr ≤ v? Integer [bal 2023]

Data Flow

MU MappingUpperBound map?[index?] ≤ v? Integer

[Choi et al. 2021]CVU CallValueUpperBound msg.value ≤ v? Integer
DFU DataFlowUpperBound var? ≤ v? Integer
DFL DataFlowLowerBound var? ≥ v? Integer

transaction. For example, if user address 𝑎 calls contract 𝑏 which in turn calls contract 𝑐 , during the
execution of 𝑐 , the sender address is 𝑏 while the origin address is 𝑎.
onlyEOA (EOA)1 This template verifies that the transaction’s origin matches the sender’s address,
thereby confirming it was initiated from an externaly owned user address (i.e., EOA address) rather
than a contract address. The intuition of this invariant template is that many attack strategies
involves multiple sophisticated interactions and therefore attackers often have to write their own
contracts. This template can neutralize such attack strategies.
isSenderOwner (SO) and isOriginOwner (OO): These templates restrict function execution to a
predefined address (owner?) that are registered as owners.
isSenderManager (SM) and isOriginManager (OM): These templates only allow function calls
from a set of predefined manager addresses mgri?.

The access control invariants are typically inserted at the beginning of non-read-only functions
to immediately halt unauthorized attempts to alter contract state.
4.2 Time Lock

The Time Lock category of invariants serves as a temporal gating mechanism for smart contract
functions. This category contains three invariants.
isSameSenderBlock (SB) and isSameOriginBlock (OB): These templates limit the ability to
execute specific paired functions within the same block by the same sender or origin. For example,
to inhibit the same sender or origin address from invoking both the deposit and withdraw functions
consecutively within a single block. The intuition is that normal users are unlikely to initiate
multiple interactions with the same function in a few seconds, while malicious attackers often use
iterative loops to drain funds from a victim contract. To implement these invariants, a state variable

1It is important to note that the forthcoming Spectra upgrade of Ethereum, anticipated for late 2024 or early 2025, will
implement EIP-3074 [EIP 2024b]. This implementation is expected to make EOA completely bypassable.
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xentrySdrBlk (resp., xentryOrgBlk) stores a hashed combination of the transaction sender (resp., origin)
address and the current block number upon entry into a function (e.g., deposit). In the exit function
(e.g., withdraw), this stored value is compared against a freshly computed hash, stored in rexitSdrBlk

(resp., rexitOrgBlk), to ensure that they differ. These two invariants are designed to be updated at the
entry point of enter functions, i.e., functions that accept tokens from users. Then verified at the
start of exit functions, i.e., functions that are responsible for disbursing tokens back to users.
lastUpdate (LU): These template moderates the frequency with which a given function can be
invoked. It inserts guard at the beginning of non-read-only functions to mandate that a specified
number of blocks, denoted as nbBlks?, must elapse between two consecutive calls to the same
function. To enforce this, the state variable xlstBlk captures the timestamp of the last block where
the function was invoked. Subsequent calls to the function check this stored timestamp against the
current block timestamp. The difference must meet or exceed the nbBlks? threshold.
4.3 Re-entrancy

The Re-Entrancy class of invariants tackles re-entrancy vulnerabilities in smart contracts. Repre-
sented by a single invariant template, nonReEntrant (RE), this category utilizes a state variable
xlock as a lock to prevent a transaction from entering a set of key functions of a contract more
than once. xlock will be set to 𝑇𝑟𝑢𝑒 when a function is invoked and reset to 𝐹𝑎𝑙𝑠𝑒 when a function
returns. The RE guard is usually placed at the beginning of enter and exit functions of a contract to
effectively mitigate re-entrancy risks.
4.4 Gas Control

We propose the Gas Control category of invariants, motivated by the Harvest example. The
intuition is that malicious attacks tend to have significantly more complicated logic to consume
a large amount of gas. This class consists of two invariants: GasStartUpperBound (GS) and
GasConsumedUpperBound (GC). As illustrated in Table 2, the GS invariant sets an upper limit
on the remaining gas at the entry point of a function, using the variable gasStart, whereas the GC
invariant sets an upper bound on the total gas consumed within the function by comparing the
remaining gas at the entry and exit point of a function, gasStart and gasEnd. These invariants are
designed to be placed at the beginning and end of non-read-only functions.
4.5 Oracle Slippage

The Oracle Slippage category mitigates risks tied to price oracles in DeFi applications. The
intuition of templates in this category is to detect potential price manipulation by malicious attacks.
This class includes two invariant templates: OracleRange (OR) and OracleDeviation (OD). The
OR template enforces a bounded range for the oracle prices. It utilizes two parameters, prLB? and
prUB?. The OD template enforces a specific percentage deviation limit between the current and last
price provided by the oracle. The parameter prDev? is employed to define a permissible deviation
rate. These invariants are usually inserted right after the oracle is called.
4.6 Special Storage

The Special Storage class of invariant templates is concerned with constraining global storage
variables that are crucial to the contract’s state or logic. The intuition of this is after an exploit, the
contract’s state variables are often in an abnormal state. Thus, by constraining the state variables,
we can prevent the exploit. This class features two main invariants: TotalSupplyUpperBound
(TSU) and TotalBorrowUpperBound (TBU). The TSU invariant imposes an upper bound (denoted
as totSup?) on the contract’s totalSupply variable, while TBU sets a ceiling (denoted as totBor?)
for the contract’s totalBorrow variable which represents the total amount that can be borrowed
from the contract. To preserve the integrity of these important state variables, these invariants are
inserted at the functions that could modify the total supply or total borrow balances.
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4.7 Money Flow(also called Token Flow)

The Money Flow class focuses on the flow of tokens within the smart contract, particularly
for functions involving token deposits and withdrawals. The intuition of these templates is that
malicious transactions tend to cause abnormally large amount of digital asset movement.
TokenInUpperBound (TIU) and TokenOutUpperBound (TOU): This template caps the number
of tokens flowing into or out of the contract each time by using an integer parameter v?.
TokenInRatioUpperBound (TIRU) and TokenOutRatioUpperBound (TORU): These templates
constrain the ratio of tokens flowing into or out of the contract, in relation to the contract’s current
token balance. They also employ an integer parameter v?.

To ensure effective governance of money flow, these invariants are placed within functions that
handle token transfers. The TIU and TIRU invariants are applied right before a token deposit, while
the TOU and TORU invariants are applied before a token withdrawal.
4.8 Data Flow

Smartian [Choi et al. 2021] leverages dynamic taint analysis to detect whether a block state
can affect an ether transfer. We extend their work to include all data flows affecting both ether
and ERC20 token transfers. This allows us to set constraints on values that could potentially be
controlled by an attacker to manipulate transfer amounts. The Data Flow category is subdivided
into four specific invariants, each designed to address a particular type of variables in the data flow.
MappingUpperBound (MU): This invariant focuses on values stored in the contract’s mapping
data structure, often representing a user’s property(e.g., a user’s shares/balances). To constrain
such user-specific values, we introduce a parameter v? to set an upper limit on these mappings.
CallValueUpperBound (CVU): Call values signify the amount of ether transferred during a
function call. Because these values directly affect the contract’s ether balance, we list it as a separate
invariant. We employ a parameter, denoted as v?, to cap the incoming ether to mitigate risks of
abnormal or malicious deposits.
DataFlowUpperBound (DFU) and DataFlowLowerBound (DFL): These invariants apply to all
other data flow variables, whether derived from external calls, storage loads, or calldata. To regulate
these variables, we use a parameter v?, setting either upper or lower bounds on these values to
thwart unauthorized manipulations.

The above invariants are inserted at the locations where data flow variables are first read. This is
often in functions that initiate token transfers. These invariants help the contract ensure that every
value used for the calculation of token transfers is within the normal range.

5 Trace2Inv

We present Trace2Inv, shown in Figure 2, a framework to infer concrete invariants as introduced
in Section 4 for a contract by analyzing its transaction traces. Trace2Inv consists of three modules:
trace parser, invariant-related data extraction, and invariant generation. The second module consists
of three submodules: invocation tree analysis, type inference, and dynamic taint analysis.

History Transaction
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 : Target Smart Contract

Invariant Templates

Trace2Inv

Selected Trace
Segment

Invariant-
related Data

Invariants
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Dynamic Taint
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Invocation Tree
Analysis 
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Fig. 2. An Overview of Trace2Inv
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5.1 Trace Parser

A transaction’s trace data, denoted as structLogs, contains a sequence of executed EVM in-
structions and each instruction is a six-item tuple ⟨pc, op, gasLeft, gasCost, stack,memory⟩ that
includes the current program counter, the EVM opcode to execute, the amount of the remain-
ing gas and the gas consumed by current opcode execution, the full view of current EVM stack
and memory. In trace parser, we reconstruct the functional context information from structLogs
as an invocation tree where each node represents an external function call and the node hi-
erarchy reflects the call-chain relationship. In particular, each tree node is a seven-item tuple
⟨addr, func, args, ret_data, ins, gasEntry, gasExit⟩ that records the current contract address, func-
tion name, corresponding arguments, returned data, the set of executed EVM instructions belonging
to the function, and the amount of the remaining gas at the entry and exit points of the function.
The invocation tree also contains metadata of the transaction, such as the transaction hash, the
block number, and the origin address. The trace parser leverages the target contract address to
isolate a selected trace segment corresponding to the target contract’s execution. This invocation
tree and the segmented trace data are then passed to the next module for further analysis.
5.2 Invocation Tree Analysis

Invocation tree analysis extracts invariant-related data from the invocation tree, that is sufficient
to collect data for access control, time lock, gas control, re-entrancy, oracle, andmoney flow invariants.
For instance, for the sender opcode, its results is extracted from the invocation tree by searching
for parent node of the target contract node. Moreover, the invocation tree is also used to identify
locations of re-entrancy by capturing nested and recursive calls to the target contract. Oracle values
are also obtained by traversing the invocation tree to locate calls to the oracle. For money flow
invariants, the required values are also read from function calls of transferring Ether/ERC20.
5.3 Type Inference

Type inference in Trace2Inv infers the type of storage slot when it is accessed. It is essential for
extracting data relevant to both special storage and data flow invariants, as accurately decoding
storage accesses with the correct type is necessary for those invariants. Decoding storage slots is
straightforward when they are listed in the contract’s storage layout, which is typically the case for
special storage invariants. However, the challenge arises with complex data structures like mapping,
often used in data flow invariants. These structures may reference storage slots not explicitly
present in the contract’s storage layout, which are instead computed through operations such as
sha3 and arithmetic functions. To solve this issue, Trace2Inv maintains a preimage dictionary
to track the key’s computation. When we encounter a sha3 opcode, the mapping positions and
slots are recorded. In Solidity, the first 32-bytes represent the mapping slot, and the next 32-bytes
serve as the mapping position. In Vyper, these roles are reversed. Anytime a 64-byte sha3 hash
is encountered, both its hash value and origin are recorded. When an sload operation has a key
that is not present in the storage layout, the preimage dictionary is consulted. We recursively trace
back the computation steps until we identify a mapping data structure that is in the storage layout.
Using the types of the mapping data structure, we infer the type of storage slot accessed.
5.4 EVM-level Dynamic Taint Analysis

Dynamic taint analysis in Trace2Inv operates at the EVM opcode level to track data sources. It is
used to extract data for data flow invariants. Given a target contract, a corresponding trace segment,
and the invocation tree of the transaction, the taint analyzer collects all accessible information
pertaining to that contract. The analyzer also infers the data types of recorded tainted data or taint
sources. It accomplishes this by utilizing storage layouts and function ABIs thereby providing a
comprehensive, type-aware taint analysis tailored for smart contracts.
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Table 3. Instructions Defined as Sources and Sinks.

Category Opcodes and Locations

Sources

External Address balance, extcodesize, extcodecopy, extcodehash
Execution Context origin, caller, address, codesize, selfbalance, pc, msize, gas
Call Data callvalue, calldataload, calldatasize, calldatacopy
Return Data returndatasize, returndatacopy
Block blockhash, coinbase, timestamp, number, prevrandao, gasprice, gaslimit, chainid
Storage sload(untainted)

Sinks
ether transfer address.call{value: uint256}
ether transferFrom callvalue
ERC20 transfer ERC20.transfer(address,uint256), ERC20 = token
ERC20 transferFrom ERC20.transferFrom(address1,address2,uint256), ERC20 = token, address2 = this

Taint Sources and Sinks. Table 3 lists the EVM instructions that our dynamic taint analyzer
identifies as sources and sinks for taint propagation. The table is divided into two categories: Sources
and Sinks. In the Sources category, we outline various sub-categories of taint sources, which include
external address, execution context, call and return data, block variables, and storage. Opcodes like
balance, extcodesize, and sload are some of EVM opcodes that load new taint sources into the stack
or memory. They are key to the taint propagation as they introduce data that could potentially
influence other data points or outcomes in the contract.
On the other hand, the Sinks category highlights areas where tainted data may potentially

lead to undesired or vulnerable behaviors. These include operations like ether transfers and
ERC20 token transfers. Notably, the locations of these sinks are marked in bold text, such as
address.call{value : uint256} and transfer(address,uint256), emphasizing their critical role in
the taint analysis. Through these identified sources and sinks, our taint analyzer can effectively
trace the flow of sensitive information within the smart contract, providing a robust framework for
dynamic invariant inference and validation.
Bit Level Taint Propagation. Our taint analyzer maintains three distinct taint trackers: the stack,
the memory, and the storage trackers. Initially, all these trackers are empty. Each tracker records
taint information at the bit level, enabling granular analysis. For instance, sload and sstore opcodes
can only read and write 32-byte chunks, but the taint status is stored for each individual bit. Our
propagation of taints follows a set of rules based on prior work [Ghaleb et al. 2022]:
R1: A value derived from one or more operands becomes tainted if any of the operands is tainted.
R2: For sload, if the storage slot loaded is tainted, the 32-byte stack entry receives the corresponding
taint information. If not, the sload acts as a new taint source and taints the stack entry. For sstore,
the 32-byte entry in the storage tracker is overwritten with the taint information from the stack.
R3: For instructions that read data from memory (e.g., mload), the result value is tainted if the read
data is tainted. The same logic applies for data loaded from storage using the sload opcode.
R4: In external calls, if the arguments in memory are tainted, the return data will also be tainted.
5.5 Invariant Generation

Using the extracted data by the previous module, the invariants’ inference module uses the
templates provided in Table 2 to generate concrete invariants where all holes are filled with concrete
values. The synthesis heuristic of generating invariants varies based on their category:
Hypothesis Testing: For EOA, SB, OB, and RE invariants, which act as assumptions regarding the
contract’s behaviors, no parameters need to be learned. If no data points violate these invariants
(i.e, all transactions in the training set satisfy the invariant), they are then directly applied to the
contract. Otherwise, the violated invariant is not applied.
Role-based Set Inference: For address-based invariants such as SO, SM, OO, and OM, we adopt a
set-based heuristic. We analyze the set of senders or origins associated with each function call. If
the size of this set exceeds a certain threshold (greater than 1 for owners or 5 for managers), we
consider it as a violation, and the corresponding invariant is not applied to that function.
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Bound Deduction: Invariants in the categories of gas control, oracle slippage, special storage, and
money flow require learning the bounds of certain integer parameters. For those, the maximum
and minimum values are chosen among the collected data points, provided the data contains at
least two distinct values. Particularly for the oracle slippage invariant (OR), an additional tolerance
of 20% is included for the upper and lower bounds, in accordance with prior research [Tolmach
et al. 2021]. For TIRU and TORU invariants, we filter outliers using a z-score threshold of 3.
Hybrid: Lastly, for the LU invariant, which deals with the block gap between calls to the same
function, we calculate the smallest block gap among the data points. If any two data points have a
block gap of zero, the invariant is not applied to the corresponding function. Otherwise, the smallest
block gap is used as the parameter for the invariant.
5.6 Trace2Inv Implementation

Trace2Inv’s input, transaction trace data, can be obtained from Ethereum via its API de-
bug_traceTransaction. Within the Trace Parser module, Trace2Inv queries EtherScan [Eth 2020] to
gather additional transaction metadata not directly available in the trace data, such as block number
and transaction origin. This metadata provides the execution context crucial for generating certain
invariants, like EOA and LU. Additionally, Trace2Inv also queries EtherScan [Eth 2020] to fetch
the contract’s source code. The code is then compiled locally using the appropriate versions of the
Solidity [sol 2018] or Vyper [vyp 2018] compilers to obtain the contract’s function ABI. With this
ABI, Trace2Inv leverages Slither [sli 2021] to decode function names, their arguments, and return
values present in the trace. Within Invariant Related Data Extraction Module, Trace2Inv compiles
source code of target smart contract, and reads the compiler’s output to obtain its storage layout.
However, some old versions of Solidity and Vyper compilers do not support this functionality. In
such cases, Trace2Inv fetches the storage layout from EVM Storage [EVM 2024].

Several optimizations are incorporated into Trace2Inv to enhance its performance. First, when
fetching trace data from an Ethereum archive node, we optimize the process by using batching
RPC requests. This significantly reduces the overhead associated with individual API calls. Second,
we use parallelization techniques to speed up the fetching and parsing trace data. Specifically,
multiprocessing is used to concurrently handle different segments of trace data, converting them into
summaries in a time-efficient manner. Third, caching is utilized to further optimize performance;
the system caches query results from EtherScan, archive nodes, and compilers. This minimizes
redundant executions and API calls, thereby accelerating the overall analysis process.

6 Evaluation

In this section, we aim to empirically answer the research questions raised in Section 3 by applying
invariant guards to real-world exploits on Ethereum Blockchain. We systematically collected
economic exploit incidents that cost greater than 300K USD financial loss from February 14, 2020, to
August 1, 2022 on Ethereum Blockchain. Our benchmark is compiled from a diverse set of sources
including academic publications [Chen et al. 2022; Qin et al. 2021], industry databases [BlockSec
2023; SlowMist 2023], and open-source GitHub repositories [Contributors 2023a,b]. It is worth
noting that we exclude from our benchmarks any hacks targeting individual user wallets, as these
are primarily the result of private key leakage, rather than protocol vulnerabilities. We also exclude
hacks where the victim contracts are close-source, as our manual analysis requires the source code
of the victim contracts. Note that Trace2Inv can also be applied to close-source contracts, as long
as their function ABIs and storage layout are available.
Table 4 presents the benchmark dataset in our study. It comprises 27 hacks which resulted in

financial losses over 2 billion USD. The column FL denotes whether the exploit involves flash loans,
which require atomicity for the hack transactions. The column Type denotes the type of victim
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Table 4. Benchmarks
+
. (Exploit: the first exploit transaction during the incident. FL: whether the exploit

transaction uses flash loan. Contracts: the victim contracts involved in the exploit. Type: the type of the

contract, either interface (I) or payload (P). PL: the programming language of the contract, either Solidity (S)

or Vyper (V). History: the number of transactions in the history of the contract up to the exploit transaction.)

Kin
d
Victim Protocol Root Cause Date Loss Exploit FL Contracts Type PL History

Br
id
ge
s RoninNetwork keys compromised 22/03/29 624M [Ron 2023] RoninNetwork I+P S 95345

HarmonyBridge keys compromised 22/06/24 100M [Har 2023a] HarmonyBridge P S 32149

Nomad zero hash as
a valid root 22/08/01 152M [Nom 2023] Nomad I+P S 15630

PolyNetwork hash collision 21/08/10 611M [Pol 2023] PolyNetwork I+P S 44509

Le
nd

in
g

bZx2 oracle manipulation 20/02/18 630K [bZx 2023] ✓ bZx2 I+P S 711
Warp oracle manipulation 20/12/17 8M Warp P S 148[War 2023] ✓ Warp_I I S 31

CheeseBank oracle manipulation 20/11/06 3.3M
CheeseBank_1 I+P S 615
CheeseBank_2 I+P S 593[Che 2023] ✓
CheeseBank_3 I+P S 557

InverseFi oracle manipulation 22/06/16 1.26M [Inv 2023] ✓ InverseFi I+P S 7590
CreamFi1 cross contract

re-entrancy 21/08/30 18M CreamFi1_1 I+P S 5[Cre 2023a] ✓ CreamFi1_2 I+P S 58184

CreamFi2 oracle manipulation 21/10/27 130M
CreamFi2_1 I+P S 1270
CreamFi2_2 I+P S 898
CreamFi2_3 I+P S 261[Cre 2023b] ✓

CreamFi2_4 I+P S 98
RariCapital1 read-only re-entrancy 21/05/09 10M [Rar 2023a] ✓ RariCapital1 I+P S 667

RariCapital2 cross contract
re-entrancy 22/04/30 80M

RariCapital2_1 I+P S 614
RariCapital2_2 I+P S 752
RariCapital2_3 I+P S 404[Rar 2023b] ✓

RariCapital2_4 I+P S 776
XCarnival logic error 22/06/26 3.87M [XCa 2023] XCarnival I+P S 342

Yi
el
d-
Ea

rn
in
g

Harvest1 oracle manipulation 20/10/26 33.8M [Har 2023b] ✓ Harvest1 I+P S 2050
Harvest2 oracle manipulation 20/10/26 [Har 2023c] ✓ Harvest2 I+P S 2161
ValueDeFi oracle manipulation 20/11/14 7.4M [Val 2023] ✓ ValueDeFi I+P S 295
Yearn forced investment 21/02/04 11M Yearn P S 672[Yea 2024] ✓ Yearn_I I S 26688
VisorFi re-entrancy 21/12/21 8.2M [Vis 2023] VisorFi I+P S 1693
UmbrellaNetwork underflow bug 22/03/20 700K [Umb 2023] UmbrellaNetwork I+P S 59
PickleFi access control 20/11/21 20M [Pic 2023] PickleFi I+P S 5439

O
th
er
s

Eminence logic error 20/09/29 7M [Emi 2023] ✓ Eminence I+P S 20589
Opyn logic error 20/08/04 371k [Opy 2023] Opyn I+P S 67
IndexFi logic error 21/10/15 16M [Ind 2023] ✓ IndexFi I+P S 20641
RevestFi re-entrancy 22/03/27 11.2M RevestFi P S 1635[Rev 2023] ✓ RevestFi_I I S 1463
DODO access control 21/03/08 700K [DOD 2023] ✓ DODO I+P S 42

Punk access control 21/08/10 8.9M
Punk_1 I+P S 28
Punk_2 I+P S 42[Pun 2023]
Punk_3 I+P S 37

BeanstalkFarms flashloan assisted
commit 22/04/16 182M BeanstalkFarms P V 5785[Bea 2023] ✓ BeanstalkFarms_I I S 306

+ : All contracts and transactions within these benchmarks can be found at [Chen et al. 2024d].

contracts. For each hack, two types of victim contracts are manually identified: payload (P) refers to
the contract that eventually transfers abnormal amounts of tokens out of the protocol, and interface
(I) refers to the contract that is directly invoked by users to initiate this transfer. The History column
gives the length of the transaction history up to the hack transaction for each victim contract.
6.1 RQ1: Effectiveness of Smart Contract Invariants

Experiment. In our first experiment, we utilize 23 pre-defined invariant templates, as detailed
in Section 4, to dynamically infer invariants from the transaction histories of 42 different victim
contracts, using the invariant generation methods as described in Section 5.5. We divide each
contract’s transaction history into two distinct sets: 70% of the transactions are allocated for
training set, while the remaining 30% are used as the test set.

To validate the effectiveness of the invariants dynamically inferred, we employ the transaction
trace data in the test set for evaluation. Utilizing the same parser and dynamic taint analyzer, we
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obtain the invocation tree and data points pertinent to the particular invariant for each transaction.
With these, we can evaluate whether a transaction violates any of the invariant guards in place. If a
transaction is blocked by these invariant guards, it serves as a positive example for the effectiveness
of the invariants. The validation process discriminates between different kinds of positives. Specifi-
cally, if the exploit transaction is successfully blocked by the invariant, it is categorized as a True
Positive. On the other hand, any non-exploit transactions blocked are counted as False Positives.

Table 5. Summarized Results of Invariants Effectiveness Evaluation.

AccessControl TimeLock GasCtrl Re Oracle Storage Money Flow Data Flow

EO
A

SO SM O
O
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LU GS GC RE O
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U
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U

TI
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TO
RU

M
U

CV
U

DF
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L

# Contracts Applied(42) 42 39 22 39 25 33 33 37 41 41 40 11 11 21 16 34 34 28 28 11 7 33 33
# Contracts Protected(42) 23 6 7 5 9 11 13 12 30 23 2 7 6 8 12 9 22 5 22 1 2 23 1
# Hacks Blocked(27) 15 4 6 3 8 9 11 10 18 15 2 5 4 7 6 8 17 5 15 1 2 18 1

Average FP(%) 0.2 0.6 1.8 0.5 2.6 0 0 2.4 2.4 2.6 0 22.3 4.6 7.9 12.6 0.7 0.4 0.8 1.4 1.5 0.7 1.6 0.9

Results. Table 5 provides a comprehensive summary of the effectiveness evaluation for the
invariants applied across various contracts. The table lists several key metrics: the number of
contracts on which an invariant is applied, the number of contracts successfully protected by the
invariants, the number of hacks blocked, and the average false positive (FP) rate. Among these, the
row # Hacks Blocked stands out as the most crucial metric as it directly measures the capability
of each invariant to block exploits. The average FP rate is also an important metric as it quantifies
the potential impact on regular users, reflecting the trade-off between security and usability.

The applicability of the invariants varies across different categories. Access Control, Time Lock,
Gas Control, Money Flow, and Data Flow are universally applicable, protecting a broad range of
contracts and blocking numerous hacks. On the contrary, categories such as ReEntrancy, Oracle,
and Storage have narrower scopes, applicable only to specific types of contracts. For instance,
the ReEntrancy invariant we studied is effective only against common single-contract reentrancy
attacks. Other attack types, such as read-only or cross-contract reentrancy seen in CreamFi1,
RariCapital1, and RariCapital2, require more specialized invariants and are left as future work.

For true positives, in each category of Access Control, Time Lock, Gas Control, Data Flow, and
Money Flow, there is a standout invariant that proves most effective at blocking hacks: EOA for
Access Control, OB for Time Lock, GS for Gas Control, TOU for Money Flow, and DFU for Data
Flow. These invariants block the highest number of hacks in their respective categories.
For false positives, EOA, OB and TOU have an average FP rate below 0.4%, while GS and DFU

have a low FP rate below 2.4%. This low rate indicates that these invariants have a small impact on
regular user transactions, thereby making them practical for real-world deployment. The elevated
false positive rates observed for OR, TSU, and TBU are primarily because of the fluctuating nature of
oracle values, total supply, and total borrow. Using upper-bound or range-based invariants for these
categories could inadvertently block all transactions once these values exceed a certain threshold.
Answer to RQ1: EOA in Access Control, OB in Time Lock, GS in Gas Control, TOU in Money
Flow, and DFU in Data Flow are the most effective in blocking hacks with low false positive rates.

6.2 RQ2: Study of False Positives and True Positives

Case Studies. In our second research question (RQ2), we explore the bypassability of the
invariants for both malicious hackers and normal users. Hackers will be informed when the
invariants are deployed in the target contract from the source code or the bytecode. It is natural to
ask whether malicious hackers can bypass the invariants and still gain profit if they realize the
existence of such invariant guards. We manually analyze every exploit transaction blocked by each
invariant (true positives) to check its bypassability. For each case, we assign one of three categories:
C1: the exploit is entirely blocked, and the hacker can no longer gain any profit; C2: the exploit is
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partially blocked, resulting in significantly reduced profits for the hacker; and C3: the hacker can
still achieve profits similar to historical data, with some adjustments to their exploit code.

We also manually analyze the false positives generated by our invariants to assess their impact
on regular users. For this, we sample up to 10 transactions from the false positives for each invariant
and evaluate their bypassability. We operate under the assumption that regular users have the
option to split transactions with large parameters into transactions with smaller parameters, lower
the gas for their transactions, or simply wait for some time to transact again after their transaction is
blocked. Based on these criteria, we categorize the false positives into three groups: D1: transaction
is completely blocked and cannot be bypassed through simple means; D2: transaction can be
bypassed by breaking it down into smaller transactions; and D3: users can bypass the transaction
by reducing the gas or waiting for some time. For both true and false positives, two authors
independently labeled the bypassability results with the third author to resolve divergence of views.

Table 6. Bypassability Results of Hacks Blocked (TPs) and Sampled Normal Transactions Blocked (FPs).

Access Control Time Lock GasCtrl Re Oracle Storage Money Flow Data Flow

EO
A

SO SM O
O

O
M

SB O
B

LU GS GC RE O
R

O
D

TS
U

TB
U

TI
U

TO
U

TI
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TO
RU

M
U

CV
U

DF
U

DF
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TP
s C1 15 4 6 3 8 2 10 5 0 15 2 3 2 2 3 7 12 2 7 1 1 12 1

C2 0 0 0 0 0 0 0 0 1 0 0 2 2 5 3 0 0 2 8 0 0 0 0
C3 0 0 0 0 0 7 1 5 17 0 0 0 0 0 0 1 5 1 0 1 1 6 0

FP
s D1 10 10 10 10 10 0 0 1 0 10 0 10 10 10 10 0 0 0 1 10 0 4 10

D2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 10 9 0 8 6 0
D3 0 0 0 0 0 0 0 9 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Results. Table 6 offers a comprehensive view of how both attackers and normal users can
potentially bypass the invariant guards. The table is divided into two major rows: True Positives
(TPs) and False Positives (FPs). For TPs, we have further categorized the effectiveness of the invariant
guards as C1, C2, and C3, signifying the level of success the hacker has in bypassing the guard. For
FPs, we use tags D1, D2, and D3 to illustrate how easily normal users can circumvent these guards.

Some invariant categories can easily be bypassed by both hackers and normal users. For example,
GS, though it blocks the most hacks in RQ1, can be easily bypassed by changing the gas passed
to the specific function call of the target contract. Some other invariants, such as GC, cannot be
bypassed by either hackers or normal users. EOA also fall into this category. OB interestingly has
no false positives, but in practice it is very hard to be bypassed by normal users.
For certain invariants such as TOU and DFU, there is a dichotomy where they block exploit

transactions effectively, but normal users can still bypass them. They make certain exploits impos-
sible by preventing hackers from reaching specific contract states required for profitability. Regular
users, who usually do not attempt to manipulate contract states for exploitative gains, can often
bypass these invariants by simply splitting their larger transactions into smaller ones. Though this
results in more transactions and higher gas costs, it does not impede their primary objectives.
Answer to RQ2: Most of invariants behave similarly for both hackers and normal users, either
being easily bypassed (such as GS) or not bypassable at all (such as EOA, OB, GC). Some invariants
could block hackers while allowing normal users to circumvent them (such as TOU and DFU).

6.3 RQ3: Effectiveness of Combination of Invariants

Experiment. In RQ3, we look into the effectiveness of various invariant combinations in
safeguarding smart contracts. Building on insights from RQ1 and RQ2, we identify a set of five
effective invariants (EOA, SO, GC, TOU, and DFU), replacing GS with GC considering that it can be
easily bypassed. Our aim is to explore whether these invariants, each effective in its own domain,
can be combined to provide a more robust defense against hacks while maintaining a low FP rate.
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After investigating the exploits blocked by each of these five invariants in RQ1, we have observed
that (1) EOA and GC can uniquely block 2 and 1 hacks, respectively; (2) no exploits can uniquely
be blocked by OB, TOU or DFU; (3) all exploits blocked by MFU can be blocked by DFU.

We then designed an experiment that combines four invariants—EOA, GC, OB, and DFU—each
chosen for its efficacy in blocking hacks and resistance to bypass. We consider two logical operators:
conjunction (∧) and disjunction (∨). By enumerating all logical combinations of invariants up to a
length of 4, we can evaluate their collective True Positives (TPs) and False Positives (FPs) based on
two metrics: (1) their ability to block the maximum number of hacks (2) their ability to block the
maximum number of hacks while maintaining a false positive rate below 1%.

Results. Table 7 shows the validation results of the best combined invariants based on metrics
Table 7. Validation Results of the Best Combined Invariants.

EOA ∧ GC ∧ DFU EOA ∧ (OB ∨ DFU)
# Contracts Applied 42 C1 20 # Contracts Applied 42 C1 18
# Contracts Protected 35 C2 0 # Contracts Protected 31 C2 0
# Hacks Blocked 23 C3 3 # Hacks Blocked 20 C3 2
Average FP rate(%) 3.99 D1 8 Average FP rate(%) 0.28 D1 10

D2 2 D2 0
D3 0 D3 0

(1) and (2), using the same evaluation methodology as described in RQ1 and RQ2.
The combination EOA ∧ GC ∧ DFU emerges as the most effective one according to the metric

(1). This result is intuitive, as this combined invariant effectively reverts a transaction when any
one of EOA, GC, or DFU is violated. Our early observation that EOA and GC can uniquely block 2
and 1 hacks, also justifies their inclusion in this composite invariant. However, this comes at the
expense of a higher false positive rate of 3.99%.

The combination EOA ∧ (OB ∨ DFU) maintains an impressively low false positive rate of 0.28%,
making it superior based on the metric (2). Its efficacy is due in part to OB’s inherent low false
positive rate and to the complementary nature of OB and DFU in the context of token transfer
functions. Both combined invariants are better at stopping hacks than individual invariants. This is
because they can work together in different parts of the smart contract code, making it more likely
they will catch harmful actions. Sometimes a function in the contract may only be protected by
one invariant, if other invariants are not applicable to this function. In those cases, both hackers
and normal users may still find a way to bypass the security measures.
Answer to RQ3: The invariant guards studied and generated by Trace2Inv are complimentary
and their combinations are promising to be more effective on contract protection and hack
prevention with lower false positive rates.
6.4 RQ4: Gas Overhead of Invariant Guards

Experiment. In RQ4, we examine the gas overhead incurred by the deployment of individual
and combined invariants. We select four benchmark contracts that represent different kinds of
protocols and programming languages. The target smart contract is instrumentedwith the generated
invariants studied in RQ3 and then compiled by either a Solidity or Vyper compiler. This process is
carried out for both the original and the instrumented versions of the contract. The compiler returns
an estimate of the gas consumption for each function in the contract, allowing us to calculate the
gas overhead for each inserted invariant by comparing the two versions. Subsequently, we replay
all transactions within the test set on these instrumented contracts. For each transaction, we add
the corresponding gas overhead when the transaction reaches where the invariants are inserted.

The total gas overhead is calculated as, Total Gas After Instrumentation−Total Gas Before Instrumentation
Total Gas Before Instrumentation . This

provides a quantitative measure of the computational burden imposed by the invariant guards,
aiding in the cost-benefit analysis of their deployment.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 79. Publication date: July 2024.



Demystifying Invariant Effectiveness for Securing Smart Contracts 79:17

Table 8. Runtime Gas Overhead (%) of Different Types of Invariant Guards.

Kind Benchmark Compiler EOA OB∗ GC DFU EOA ∧ GC ∧ DFU EOA ∧ (OB ∨ DFU)
Bridge HarmonyBridge Solidity 0.5.17 0.04 0.59→ 0.12+ 0.02 0.01 0.07 0.63→ 0.16
Lending Harvest1 Solidity 0.5.18 0.00 0.96→ 0.02 0.01 0.01 0.02 0.97→ 0.04
Yield-Earning CreamFi2_1 Solidity 0.5.17 0.00 0.14→ 0.01 0.01 0.00 0.01 0.15→ 0.01
Others BeanstalkFarms Vyper 0.2.8 0.00 4.09→ 0.68 / 0.00 0.00 4.09→ 0.68

∗ : OB is relatively gas-expensive due to the use of SLOAD and SSTORE operations. We optimize this by omitting OB for transactions initiated
by an EOA, which is also validated on the fly.
+ : The Ethereum Cancun upgrade on March 13, 2024, implemented EIP-1153 [EIP 2024a], which added TLOAD and TSTORE opcodes. These
can replace SLOAD and SSTORE in OB invariant to further reduce its gas overhead. As of May 1, 2024, Solidity and Vyper compilers have not
fully supported EIP-1153; estimates are based on potential opcode replacements in OB invariant. See updated gas overheads after→.

Results. Table 8 lists four benchmark contracts and shows the runtime gas overhead incurred by
the application of various individual and combined invariant guards. Specifically, the OB invariant
introduces the highest gas overhead among all individual invariants. This is attributable to the fact
that OB utilizes a new contract state variable in storage to store its hash and, therefore, necessitates
a storage load or store each time it is executed. In contrast, other invariants do not require additional
storage variable access. DFU has the least impact on gas overhead, largely because it merely sets
an upper bound on already accessed values, whereas other invariants typically fetch opcode results
for comparison. The combined invariants do not have a gas overhead significantly higher than the
individual invariants. This is because the combined invariants do not access new variables, but
rather utilize the existing variables to perform additional comparisons.
Answer to RQ4: The gas overheads of these invariant guards are as low as 0% - 0.68%.

6.5 RQ5: Comparative Analysis with Other State-of-the-art (SOTA) Tools

Experiment 1: Compare with InvCon+, a SOTA invariant mining tool. InvCon+ [Liu et al.
2024], a direct follow-up work of InvCon [Liu and Li 2022], leverages transaction pre/post conditions
to generate invariants aimed at mitigating real-world smart contract vulnerabilities. InvCon only
infers likely invariants and only produces raw results from Daikon [Ernst et al. 2007]. In contrast,
InvCon+ generates accurate invariants that are verified against the contract’s transaction history.
Similar to Trace2Inv, InvCon+ takes a target contract and its transaction history as inputs and
automatically generates invariants. We obtained InvCon+ [inv 2024] from its authors, and applied
it on our benchmarks in Table 4. Following the same methodology of RQ1 and RQ3, we used 70%
of the transaction history for training, testing the generated invariants on the remaining 30%.
Experiment 2: Compare with TxSpector, a SOTA transaction attack detection tool. Though
Trace2Inv is not primarily designed for transaction anomaly detection, we explored its capability to
identify attack transactions. TxSpector [Zhang et al. 2020] identifies attacks using eight detectors: re-
entrancy, unchecked call, failed send, timestamp dependency, unsecured balance, misuse of origin,
suicidal, and gas-related re-entrancy. We obtained TxSpector from its public repository [txs 2020].
TxSpector operates with a modified Geth archive node to produce transaction traces that are fed
into the detectors. Using components of Trace2Inv along with an unmodified Geth archive node,
we generated equivalent transaction traces for the testing sets of our benchmarks, and applied
TxSpector detectors to analyze them. We also patch TxSpector to support new EVM opcodes
introduced after its last update. Consistent with the setup in the TxSpector paper [Zhang et al.
2020], we set a timeout of 60 seconds for all benign transactions. We extended this to 2 hours for
hack transactions, which are typically more complex, when applying the detectors.
Table 9. Comparison among Trace2Inv, InvCon+, and TxSpector. (TxSpector only takes transactions as input,

thus it does not have statistics about contracts.)

Trace2Inv InvCon+ TxSpector
# Contracts Applied(42) 42 27 -
# Contracts Protected(42) 31 8 -
# Hacks(27) 20 Blocked 3 Blocked 7 Detected
Average # Invariants per Contract 12 2054 -
Average FP rate(%) 0.28 73.55 15.30
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Results. As shown in Table 9, InvCon+ was applied to 27 contracts. The other 15 contracts in
our benchmarks, which utilize a proxy-implementation pattern as described in Section 3, could
not be processed by InvCon+ due to its requirement for contract logic and storage to be unified.
InvCon+ encountered errors for 16 benchmarks when processing their transaction histories, and
successfully generated invariants for 11 victim contracts. These invariants secured 8 contracts
across 3 hack incidents (Cheesebank, Punk, Warp). However, the enhanced security comes at a
substantial cost: an average of 2054 invariants per contract and a false positive rate of 73.55% if
directly applying all of the invariants. This makes InvCon+ not suitable for practical application
without significant human efforts to filter out unproductive invariants.

TxSpector correctly identified 7 out of 27 transactions as malicious. For the remaining 20 hack
transactions, TxSpector experienced a timeout on 1 transaction and failed to flag 19 transactions.
Although TxSpector reliably identifies single contract re-entrancy attacks, it struggles with detecting
other attack types such as cross-contract re-entrancy and oracle manipulation. Additionally, it
inaccurately marked 15.30% of benign transactions as malicious, compromising its real-world utility.

In contrast, Trace2Inv, utilizing the invariant template EOA ∧ (OB ∨ DFU), effectively secured
31 of 42 victim contracts across 20 hacks with a remarkably low FP rate of just 0.28%. Moreover,
Trace2Inv demonstrated enhanced practicality by generating an average of only 12 invariants per
contract, significantly outperforming InvCon+ in terms of real-world viability. Unlike TxSpector,
which only detects hacks, Trace2Inv not only blocks a greater number of hacks but also achieves
this with a significantly lower FP rate, indicating its effectiveness in anomaly detection as well.
Identifying New Exploits: In the development of Trace2Inv, we surprisingly found two

previously unreported exploit transactions, earlier than any reported exploit transactions against
RariCapital1 [Rar 2023a] and Yearn [Yea 2024]. The two transactions were initially reported by
Trace2Inv as false positives, because they were not flagged as hacks when we collected benchmarks.
However, after manual investigation, we found the two transactions caused a huge financial loss
and the addresses of the originators of the two transactions are flagged on EtherScan as “Rari
Capital Exploiter” and “Yearn (yDai) Exploiter”, respectively. Thus, we believe they are indeed
exploit transactions. This discovery underscores Trace2Inv’s potential in unveiling new exploits.
Answer to RQ5: Trace2Inv outperforms current SOTA works on smart contract invariant
mining and transaction attack detection in terms of both practicality and accuracy.

6.6 Threats to Validity

The internal threat to validity mainly lies in human mistakes in the study. Specifically, when
analyzing the possibilities of bypassing invariant guards, we may miss some possible bypassing
strategies. Tomitigate this threat, two of the authors independently labeled the results, andwhenever
a conflict arises, it was resolved by the third author. All authors have more than two years’ smart
contract security analysis experience.

The external threat to validity lies in the subject selection of our study. The type of hacks studied
in our experiments may be limited and biased. To mitigate this issue, we systematically collected
all the well-known hacks from a diverse set of sources and finally included 27 representative hacks
in our benchmark. These attacks attribute to many different root causes, including compromised
keys, hash collisions, oracle manipulation, etc. Their affected contracts are from diverse application
domains, e.g., bridges, lending, and yield-earning. Therefore, we believe they are representative
and can be used to evaluate the effectiveness of the invariant guards.

7 Discussion

In this section, we discuss some key takeaways of this work and their implications in the context
of invariant-based security measures for decentralized finance (DeFi) protocols.
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Choosing Complementary Invariants. Our findings underscore the importance of selecting a
diverse set of invariants to safeguard smart contracts. Each type of invariant serves as a unique
line of defense against abnormal transactions. For instance, invariants in time lock category act as
temporal barriers, making it difficult for attackers to execute key functions like withdraw multiple
times within one transaction. On the other hand, invariants in data and money flows categories
limit the token amounts that can be withdrawn in one function call. By employing a combination
of these invariants, developers force attackers to only withdraw a controlled amount of tokens per
transaction, which may disrupt the mechanism the attack relies on, thereby blocking the attack.
Dynamic Parameter Updates for Invariants. Another key insight is the need for dynamic
parameter updates for certain types of invariants. For invariants that are tied to variables that
change over time—like oracle prices or storage values—parameters can quickly become obsolete. If
such an invariant is violated, it could lead to a cascade of failed transactions, causing a high FP rate.
Thus, it is crucial for developers to monitor these variables and adjust the invariant parameters.
Conversely, for invariants related to independent actions like token transfers, the parameters can
remain relatively stable, as user behavior in these domains tends to be stable over time.
Mitigating Flash Loan Attacks. Our benchmarks indicate a significant prevalence of flash loan-
based hacks, with 17 of 27 examined hacks leveraging flash loan. Flash loans enable users to borrow
large amounts of tokens for the duration of one transaction, providing attackers with substantial
resources to execute complex hacks. Our approach can effectively mitigate the risk posed by flash
loans. Invariants like EOA and OB block flash loan hacks by enforcing attackers to split their
transaction into multiple ones. Without flash loan, the attacker would need to use their own
assets to execute the hack with the uncertainty of other bots’ back-running between the hackers’
transactions. This raise not only the technical but also financial barriers to successful attacks.
Impact of Invariants on Contract Composability. Incorporating invariant guards into smart
contracts may limit their adaptability and integration with other DeFi protocols. However, our
study in Section 4 reveals that many invariants stem from existing DeFi protocols requirements,
underscoring the preference of developers for security benefits over flexibility. Moreover, our
findings in RQ2, as discussed in Section 6, show that certain invariants, e.g., OB, have almost no FP,
while others, e.g., TOU and DFU, can possibly block malicious transactions while allowing normal
users to circumvent them. These insights imply that with careful selection and understanding of
user behaviors, developers can devise invariant guards that minimally affect contract composability.

8 Related Work

Smart Contract Invariants. Prior works have studied various smart contract invariants. Zhou
et al. [Zhou et al. 2020] introduces six invariants to defend against different hacks. Cider [Liu et al.
2022a] uses deep reinforcement learning to learn invariants that prevent arithmetic overflows,
while SPCon [Liu et al. 2022b] recovers likely access control models from function callers in past
transactions. Over [Deng et al. 2024] infers safety constraints on oracles using contract source
code and oracle update history. In contrast, Trace2Inv explores a broader range of invariants and
assesses their effectiveness and bypassability against real-world attacks.
Smart Contract Security Analysis. There is a large body of works on the detection of security vul-
nerabilities in smart contracts. Oyente [Luu et al. 2016] is one of the first symbolic execution-based
security tools to detect reentrancy, mishandled exception, transaction order dependency, and times-
tamp dependency. It has been extended to detect greedy, prodigal and suicidal contracts [Nikolić et al.
2018]. Other well-known symbolic-execution tools include Manticore [man 2019] and Mythril [myt
2019] which are able to find other types of vulnerabilities, e.g., dangerous delegatecall, integer
overflow, etc. Slither [sli 2021] is another popular static security analysis tool for smart contracts. It
performs data flow and control flow dependency analysis to support up to 87 bug detectors. Other
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static analyzers include SmartCheck [Tikhomirov et al. 2018] mainly targeting bad coding practices,
Securify [Sofware Reliability Lab 2019] and Ethainter [Brent et al. 2020] for finding information-flow
vulnerabilities. Moreover, dynamic analysis tools [Atzei et al. 2017; Jiang et al. 2018; Liu et al.
2020; Nguyen et al. 2020; Trail of Bits 2019; Wang et al. 2020; Wüstholz and Christakis 2020] were
proposed to detect smart contract vulnerabilities through fuzzing and model-based testing.

There is a substantial body of work focusing on the detection and exploitation of DeFi vulnerabili-
ties. Qin et al. [Qin et al. 2021] and Zhou et al. [Zhou et al. 2021] manually formulated vulnerabilities
such as oracle price manipulation and arbitrage into an optimization problem. FlashSyn [Chen et al.
2022] proposed a framework that automatically formulates flash loan attacks as a synthesis problem,
by approximating the functions of DeFi protocols. Wu et al. [Wu et al. 2021] identified several oracle
price manipulation patterns from on-chain transaction data to detect real-world attacks while Kong
et al. [Kong et al. 2023] detects price manipulation vulnerabilities in DeFi applications through
inter-contract taint analysis. Also, Gudgeon et al. [Gudgeon et al. 2020] showcased how to use
flashloan to conduct governance attack. Baum et al. [Baum et al. 2022] surveyed the state-of-the-art
mitigation techniques for front-running in DeFi. Interestingly, several works [Deng et al. 2023;
Xue et al. 2022; Zhang et al. 2023] explored front-running as a defense mechanism against smart
contract exploits. Different from the over-generalized security patterns used by the existing tools,
our invariant guards capture the subtle semantic constraints of specific smart contracts.
Runtime Verification and Validation. Runtime verification has been used for validation purpose
where the runtime checks are on properties from users’ expectation rather than from formal
program specifications [Magazzeni et al. 2017]. Sereum [Rodler et al. 2018] is a general runtime
validation framework to protect deployed contracts against reentrancy attacks. Sereum extends
Ethereum by introducing the detection module for monitoring attacks rooted in different types
of reentrancy. Solythesis [Li et al. 2020] provides a source-to-source compiler that facilitates
the runtime validation of smart contracts. It takes as inputs a smart contract code and a user
specified invariant, and generates an enhanced smart contracts that reject all unexpected contract
transactions. In contrast, Trace2Inv is not limited to predefined attack types and has demonstrated
effectiveness in mitigating a wide range of sophisticated attacks.

9 Conclusion

In this paper, we present the first comprehensive study of the effectiveness of practical invariant
guards on preventing DeFi smart contract attacks. Our large-scale experiments on real-world DeFi
hacks demonstrate that the inferred invariant guards are very effective in stopping the existing
hacks, but some invariant guards can be bypassed by experienced attackers.We also show combining
multiple invariants can be more effective than individual invariants with a lower false positive rate.
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